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Some motivations for hydrologic prediction

Flood forecasting
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Topics

« Sources of hydrologic forecast skill
« Past and present hydrologic prediction systems.
* Future ensemble hydrologic prediction systems

and technological challenges

— coupling with weather-climate ensembles.

— data and hydrologic data assimilation issues.

— hydrologic ensemble modeling issues.
— verification issues.



Sources of hydrologic forecast skill for
very small basins, very short leads

 Good weather forecast/nowcast/observations; satellite, radar observations
crucial for improving flash-flood predictions.

« Especially dry, moist, rain-on-snow, or fire-baked soils can exacerbate
flooding.

Flash flood in Versilia and
Garfagnana (Apuan Alps,
Tuscany, Italy) 19 June 1996

J. Kerkmann (EUMETSAT)
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Hydrologic predictability, short leads

Normalized Spread Ensemble Mean

Case |’

Case

Case

Case

Flg 8. Spatial distribution of (left) normalised ensemble spread §, of ac lated daily pr (see text), and (right) ensemble mean of
d daily precif (mm) for (a,b) 29 Jul 1999, (c,d) 20 Sep 1999 (e,f) 25 Sep 1999 (g.h) 6 Nov 1999. The panels show the MC2
3 km model domain without the relaxation zone.

Ensemble forecasts for 4
flooding events in ltaly.
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»  Plots of forecast normalized spread
and ensemble mean.

»  Synoptic scale events more
predictable than convective-
dominated events.

»  More predictability in complex terrain
(not shown).

)
Ref: Walser and Schar, J. Hydrology, 2004



Example: 1-2 day lead hydrologic forecast
for a basin in Northern lItaly

Hydrologic model forced with multi-model weather ensemble data.
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Figure 2. The 07-09 November 2003 event: streamflow forecast (left panel, m3/s) and QPF
averaged over the basin and accumulated over 6-hour periods (right panel; mm), as a function of
the forecast range (hours). The different discharge curves have been obtained by feeding the
TOPKAPI model with the precipitation forecast by the different meteorological models and with
the raingauge observations (red dashed line). The observed discharge (blue dotted line) is also
plotted for reference.

Skill of hydrologic forecast tied to the skill of the precipitation/temperature forecasts. Here, all
forecasts missed timing of rainfall event, so subsequent hydrologic forecasts missed event.
Reservoir regulation, hydrologic model may have also had effects.

6

Source: A meteo-hydrological prediction system based on a multi-model approach for ensemble precipitation forecasting. Tomasso Diomede et al, ARPA-SIM, Bologna, Italy.



Sources of hydrologic skKill:
medium basins, medium leads

* Modeling of the land state (snow, soil moisture), observed
precipitation, upstream river conditions can be important.

« Weather-climate forecasts may have beneficial impact, e.g., sudden
warming diminishing snowpack.

6-day An n-day hydrologic
K /—\\)\ forecast in this basin
with its 6-day transit

time requires 6-n
days of observations

/ and n days of
\ \/ forecasts.

(Actually, commonly
even longer than 6-n
days of observations

to spin up and tune
hydrology model)

_ 2-day
~ 1-day



Sources of hydrologic forecast skill:
large basins, long leads

« Diminishing influence of weather and climate forecasts due to large
errors at longer leads. Small signals from ENSO and such.

« Deviations from climatology largely tied to land state / snowpack.
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: e s Correlation r = 0.45, n = 62 yr (p < 0.000). For SOI > +0.50,
oS mean = 155.6, median = 162.7 maf, n = 12. For SOI < -0.50,
mean = 117.99 maf, median = 119.2 maf, n = 20, 7 test of

s’ difference = 4.194 (p < 0.0005). Ratio of (SOI+/SOI-) = 132%.
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Ref: Pulwarty and Redmond, BAMS, March 1997
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Table 1. Summary of Climate Signals Exhibiting 95% Significant Teleconnection to the Indicated Pattern of Runoff Variability for the
Designated Season and Lead Time"

Lead 0 Lead 1 Lead 2 Lead 3 Lead 4
East/Mid-Atlantic/Gulf
DIJF Nino3.4(—) Nino3.4(-), PDO(-) AMO(+) AO(—), NAO(—)
MAM Nino3.4(+) Nino3.4(+)
JJA PDO(+) PDO(—)
SON AO(—) AO(—)
Far West/Great Basin
DIJF NP(+)
MAM AO(—)
JJA AO(+) NAO(—), NP(+), PDO(—) Nino3.4(—), AMO(+)
SON AO(+) NP(—)
Ohio/Tennessee Basin
DIJF NP(—) AO(—), AMO(+)
MAM PDO(-) Nino3.4(-)
A PDO(x) NP(+), PDO(—)
SON AMO(+) AMO(+) AO(+), AMO(+)
Southern Plains
DIJF PDO(—) Nino3.4(—), PDO(-), AMO(—) NAO(+)
MAM  Nino3.4(+), PDO(-) Nino3.4(+), PDO(+) Nino3.4(+)
1A PDO(—) AO(+) AO(—)
SON Nino3.4(—)
New England/Quebec
DIJF NP(—)
MAM NAO(+) AO(-), NAO(—) NAO(-)
JJA NAO(-) PDO(-) PDO(—) NAO(—-)
SON PDO(+) AO(+), Nino3.4(+) AO(+), PDO(—) AMO(+)
Southwest/Mexico
DIJF NP(—) Nino3.4(—) PDO(—), AMO(+) PDO(—) PDO(—), AMO(+)
MAM  Nino3.4(%), PDO(—) AO(+), NAO(—), Nino3.4(x) Nino3.4(—) Nino3.4(—), AMO(+) AMO(+)
Upper Mississippi
DIJF PDO(—) NP(—) PDO(+)
Upper Missouri/Canadian Prairie
DIJF NAO(-)
MAM PDO(+) PDO(+) PDO(+) AO(+)
JJA
Great Lakes
MAM AO(—), AMO(—) NAO(+) AMO(+)
Pacific Northwest
JJA PDO(—), AMO(—) PDO(—) Nino3.4(—), PDO(—), AMO(%) Nino3.4(x)
Lower Missouri
JJA AO(+) AMO(-) AMO(—)
SON AO(+)
Upper Mississippi
DIJF AMO(-)

“See text for definition of the climate signals. A (+) indicates the positive phase of this index is significantly related to the runoff pattern (see section 2.5
for a description of the significance test), a (—) indicates the negative phase, and (£) indicates both phases. Rows indicate runoft season, and columns
indicate lead time in seasons. DJF, December—February; MAM, March—May; JJA, June—August; SON, September—November; AMO, Atlantic
Multidecadal Oscillation; AO, Arctic Oscillation; PDO, Pacific Decadal Oscillation; NAO, North Atlantic Oscillation; NP, North Pacific index.

Sources of
hydrologic
skill:
long leads

Relationship of runoff at various
leads and parts of North America
to various climate patterns of
variability.

There can be some enhanced
predictability of future runoff
from the current states of these
patterns.

Not all patterns, nor even
all phases of a pattern, provide
predictability.

From Maurer et al., Water Resources
Research, 2004, W09306.



Sources of hydrologic forecast skill:
snow-water equivalent deviations

MAM, SWE, Lead 0 seasons

Low Values High Values |

'iéar West/Great BaS_i'n : Y

Figure 4. For the indicated runoff patterns (identical to
those in Figure 3 for the specified season), shaded blocks
indicate grid cells with statistically significant relationships
of SWE with runoff pattern variability for the season
March—May (MAM) and lead time of zero seasons. This
relates the MAM runoff variability, expressed in the PC
time series, with the SWE anomalies at the prior time
indicated by the lead time.

Contours: loadings associated
with leading principal component
for runoff in given area.

Shaded area: grid cells with
relationships of runoff and this
PC.

Conclusion: dry ground --> low
runoff in spring season,
snowy/wet ground, high runoff in
spring season. Not surprising.

Ref: Maurer et al. 2004.
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Sources of hydrologic forecast skill:
snow-water equivalent

JJA, SWE, Lead 1 seasons

‘Low Values __High Values

* Looking one season ahead,
in western US, low spring
snow cover --> low summer
runoff. However, high spring
snow cover in central US
Rockies does not necessarily
mean high summer runoff

ot YT (presumably because the

C M paific Northwest, A melting may have already
occurred)

11



Past and present hydrologic

Examp
Examp
Examp

forecast systems

e 1. Regression method
e 2: US flash-flood warning system.
e 3: Ensemble streamflow prediction

in US for seasonal forecasts.

Example 4: Bangladesh medium-range
probabilistic flood forecast system.

Example 5: European short-range flood
forecast system for small-medium basins.

12



(1) Regression models to
predict streamflow

Example: predicting April maximum streamflow from
Columbia-basin average 31 March snow-water equivalent
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(2) Flash-flood warning system

Case: t-hr FFG = WSR-88D estimate

ISSUING A FLASH

VALUE

. t-hr NEXRAD estimate

HRAP

h,

1 i

!
: FLOOD WARNING
: SHOULD BE :
| CONSIDERED I

-
\  AFLASHFLOOD

Case: t-hr FFG > WSR-88D estimate

Runoff = Thresh-R

t-hr FFG Curves

WARRANTED |

» WARNING IS NOT 1
1
1

{SAC — SMA)
Hydrologic Model

1

(= What if ?
é Rainfall Scenarios
Rainfall
A
o
=
I

Soil Moisture
Conditions (RFCs)

t=h

r Threshold-Runoff
Calculation

.T

Snyder's
hydrograph

2-5 year returning
period flow

A sample system
(here, the US River
Forecast System) for
flash-flood guidance in
small basins.

14
ref: Ntkelos et al, J. Hydrometeorology, Oct. 2006



(2) Flash-flood warning system

Case: t-hr FFG = WSR-88D estimate

ISSUING A FLASH

SHOULD BE
CONSIDERED

1
: FLOOD WARNING
1
1
1

t-hr EFG - t-hr NEXRAD estimate
VAWE [ Comparison }— (HRAP)
] " A FLASH FLOOD |
> WARNING IS NOT 1
o Case: t-hr FFG > WSR-88D estimate : WARRANTED j
=
I
t-hr FFG Curves
Runoff = Thresh-R :15 L. What if ? {SAC — SMA)
é Rainfall Scenarios H‘,’drologic Model
Rainfall
-~ T
3 Soil Moisture
T Conditions (RFCs)
t=hr Threshold-Runoff
Calculation

Snyder's
hydrograph

2-5 year returning
period flow

Using geographic
information system
data, a hydrologic
model, and a variety of
land-state conditions,
tables of the time-
averaged amount of
precipitation needed to
cause a flash flood are
tabulated for a small
basin/ For example, if
today’s soil is wet and
there is more than 20
mm/hour * 6 hours, the
basin will flood.

15



(2) Flash-flood warning system

Case: t-hr FFG = WSR-88D estimate

ISSUING A FLASH
FLOOD WARNING

SHOULD BE
CONSIDERED
t-hr EFG - t-hr NEXRAD estimate |  ~T-TTTTTTTTTT
VAWE [ Comparison }— (HRAP)
~ T
> WARNING IS NOT 1
o Case: t-hr FFG > WSR-88D estimate : WARRANTED j
=
=
t-hr FFG Curves
Runoff = Thresh-R :15 L. What if ? {SAC — SMA)
é Rainfall Scenarios H‘,’drologic Model
Rainfall
-~ T
3 Soil Moisture
T Conditions (RFCs)

t=hr Threshold-Runoff

Calculation

.T

Snyder's
hydrograph

2-5 year returning
period flow

Precipitation estimated
from radar scans is
compared with the
estimated

precipitation rates that
will produce a flood to
determine whether a
warning should be
issued.

16



(3) US ensemble streamflow prediction
(ESP) technique (medium to long leads)

Multiple streamflow scenarios with historic
meteorological or forecast weather/climatic data

A = Ensemble of time series of possible
scenarios, commonly weather in past
years, or model forecasts

< Hydrologic

: Scenario 2 forecast model
Scenario 1 using initial
model state and
atmospheric

Saved model states Time ensemble
reflect current ~ =

conditions l

Results used in statistical analysis to produce
forecasts with probabilistic values 17

©The COMET Program/Kevin Werner
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(4) Bangladesh flood forecast system

(a) Branmaputra 2004

MedIUIII (1-10 C) (1) 1-day (1) 4-aay
B 7 L —
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17

e accounting for uncertainties Tom Hopson and Peter Webster's ensemble-
® final error correction based flood forecast system using ECMWF

e generation of discharge forecast pdf f .

o critical level probability forecast orecast data. Bangladesh is very flat country,

{} prone to flooding.

(V) Dissemination 18
Ref: Hopson and Webster, 2008, in review.



(5) Short-term flood forecasting with hydrologic
model driven by local-area ensemble forecasts

« COSMO-LEPS limited-area ensemble driving hydrologic forecast model.

L ECMMEEES defta 2. COSMO-LEPS Reuss=Luzern (9 May 12 UTC)
z — |observed ff .
?unc?rf rfon;u::ﬁembre members At the Start Of thls ﬂOOd
ensemble median =
o 65 % confidence interval event, driving the

= runcff from deterministic control run

hydrologic model with a
deterministic forecast
e produced non-record
el || flood forecasts. Some of

the ensemble members
did produce record

flooding, as was observed.

1.0

0.8

Runaff (mm by

0.6

04

0.2

LEPS-Forecast

0.0

T T - T T T T T -
8 May-99 10 May-98 12 May-99 14 May-98

19
Verbunt et al., August 2007 J. Hydrometeorology



Deficiencies of many 1st-generation
coupled hydrologic forecast systems

Past

Flow

Ensembles of atmospheric
information driving hydrologic

Future system may be biased, may

not represent all sources

of forecast uncertainty, may
not have needed spatial detail
if supplied from numerical
model(s). For long-lead
simulations, samples of

past years may not represent
changing climate.

Soil moisture, snow

cover, streamflow are not
known perfectly at all
locations. What is their
uncertainty? How do errors
spatially co-vary?

Time

A hydrologic forecast model is run

during this time, keeping track of

streamflow changes. Such models are far

from perfect, sources of model error may

not be accounted for. 20

©The COMET Program



IN_BOX

INSIGHTS and INNOVATIONS

HEPEX

The Hydrological Ensemble Prediction Experiment

BY JoHN C. SCHAAKE, THoMAs M. HAMILL, RoBerTO Buizza, AND MARTYN CLARK

RATIONALEFORHYDROLOGICAL

ENSEMBLE PREDICTION. Imagine

yourself as the manager of a reservoir in
the western United States. Finally, after many years
of drought and low water levels, the mountains above
you have received ample snowfall this winter. It is now
late spring, and the extended-range forecast suggests
a strong surge of moisture. A single forecast based
on a (possibly high-resolution) model prediction
indicates heavy rain on the snowpack, causing very
rapid melting, perhaps producing more flow than
your reservoir can store. If you release water from the
reservoir now in anticipation of extreme runoff and
the precipitation is less than predicted, that water is
lost to your customers; should the drought return,
inadequate reservoir storage may eventually require
water rationing. But if you do not release, there is a
chance that the sudden surge of water could top the
reservoir and cause potentially catastrophic flooding
downstream.

This is an example of one of many complex deci-
sions faced by water managers. Ideally, as manager,
you would be supplied with a perfect weather fore-
cast, you would have precise measurements of the
snowpack and soil moisture, and you would utilize
highly engineered hydrological models that would
nearly perfectly predict the amount and timing of
the streamflow. The one resulting hydrological pre-

AFFILIATIONS: ScHaske—Consultant, NOAA National Weather
Service, Office of Hydrologic Development, Silver Spring,
Maryland; HamiL—NOAA Earth System Research Laboratory,
Physical Sciences Division, Boulder, Colorado; Buizza—European
Centre for Medium Range Weather Forecasts, Reading, England;
CLark—National Institute for Water and Atmospheric Research,
Christchurch, New Zealand

CORRESPONDING AUTHOR: Dr. John C. Schaake, IA3 Spa
Creek Landing, Annapolis, MD 21403

E-mail: john.schaake@noaa.gov

DOI:10.1175/BAMS-88-10-1541

@2007 American Meteorologlcal Sodety

AMERICAN METEOROLOGICAL SOCIETY

diction would provide enough information to make
the correct decision. In reality, there are tremen-
dous uncertainties. The weather forecasts supplied
to you are imperfect and lacking in critical detail;
will the precipitation fall primarily in the form of
rain on snow (bad, as it may cause flash flooding)
versus snow on snow (good, as it would generate a
gradual, delayed runoff)? At what elevation will the
rain change to snow? And what about the existing
snowpack? There may be only a handful of actual
snow-depth measurements. Finally, the land surface
and hydrological routing models you have available
are commonly simplified descriptions of the hydro-
logical processes; for example, they may treat each
subbasin as a homogeneous element covered by the
same average snow cover and soil moisture. Given
the myriad uncertainties, a natural tool for mak-
ing the decisions would be a probabilistic forecast,
possibly based on an ensemble hydrological predic-
tion system, akin to the now-ubiquitous ensemble
weather prediction systems. Ideally, this system
would produce multiple realizations of possible
future streamflows that were “sharp” (much more
specific than, say, drawing from a climatology of
streamflows in past years) and yet reliable (e.g., over
many situations, when there was a 20% forecast of
a runoff exceeding y m*s™, the runoff actually ex-
ceeded ym’s™20% of the time). Were such a product
available, the eventual cost of reduced storage froma
dam release could be weighed against the likelihood
of flooding impacts without the release.

An automated, skillful, reliable ensemble stream-
flow forecast product is conceptually appealing.
Figure 1 provides a schematic of one possible system
that explicitly accounts for the major sources of
uncertainty in the forecasting process. An ensemble
of atmospheric forecasts is first run through a me-
teorological preprocessor, producing meteorological
forcings for the hydrological model that have been
downscaled, corrected for bias, converted to produce
the specific variables of interest, and adjusted to have
realistic spatial and temporal correlations of errors.

OCTOBER 2007 BANS | 1541

"HEPEX"

an
international,
cooperative
project to
advance
ensemble
hydrologic
predictions

21



Weather-Climate
Ensembles

Land-surface state

observations (snow,

streamflow,...)

A

Y

Meteorological
Pre-processor

Hydrological
Data Assimilator

Calibrated
Weather-Climate
Ensembles

\ 4

Calibrated

Land-surface state

Ensembles

Hydrological
Forecast

Model(s)

N
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Streamflow
Ensembles

y

Hydrological
Product
Generator

\ 4

Calibrated
Streamflow
Ensembles

. AN

Verification
System

HEPEX's
envisioned

"Ensemble
Hydrological
Prediction
System”
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Weather-Climate
Ensembles

A

Meteorological
Pre-processor

(

Calibrated
Weather-Climate
Ensembles

|

Land-surface state
observations (snow,
streamflow,...)

)

Y

Hydrological
Data Assimilator

\ 4

Calibrated
Land-surface state
Ensembles

)

L.

Hydrological
Forecast
Model(s)

N

y

4

(

Streamflow
Ensembles

)

y

Hydrological
Product
Generator

y

4

Calib

(

o

rated
Streamflow
Ensembles

Verification
System

Use ensembles
of statistically adjusted
weather / climate forecasts
to provide
samples of future
atmospheric states

Important properties:
(1) appropriately skillful
at short leads
(2) representative of this year’s
climate if forecasts extend to
longer leads
(3) calibrated data has
biases removed, correct
spatial covariances.
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Weather-Climate
Ensembles

\

Meteorological
Pre-processor

Calibrated
Weather-Climate
Ensembles

Land-surface state
observations (snow,
streamflow,...)

)

Y

Hydrological
Data Assimilator

\ 4

Calibrated
Land-surface state
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Hydrological
Forecast
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Streamflow
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y

Hydrological
Product
Generator

\

4
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Calibrated
Streamflow
Ensembles

Verification
System

Develop an
ensemble of initial
land / show/ streamflow
states consistent with
the observational data,
with appropriate spread
and error covariances.
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Weather-Climate o
Ensembles

Land-surface state

streamflow,...)

bservations (snow,

)

A

Y

Meteorological
Pre-processor

Hydrological
Data Assimilator

\ 4

Calibrated Calibrated
Weather-Climate Land-surface state
Ensembles Ensembles
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\ 4

Streamflow
Ensembles

Forecast

)

v

Hydrological
Product
Generator

\ 4

(

o

Calibrated
Streamflow
Ensembles

Verification
System

Input the weather-climate
ensembles and land / snow
| streamflow ensembles
into hydrologic forecast
model(s), with multiple
parameters or stochastic
formulations to account
for model uncertainty.
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streamflow,...)
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Verification
System

Statistically adjust the
streamflow forecasts,
mitigating the remaining
biases/spread issues, and
tailoring the products to the
formats most useful to the

customers. 26



Weather-Climate
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\

Meteorological
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Calibrated
Weather-Climate
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streamflow,...)
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Monitor the forecasts,
monitor the users’ issues,
and refine the process.



Probabillistic systems can be developed
for flash flood warnings, also

" "ISSUING A FLASH 1
Case: t-hr FFG £ WSR-838D estimate 1 FLOOD WARNING :
‘;: SHOULD BE X
| CONSIDERED* !
t-hr FFG W - || t-hr NEXRAD estimate fTTTTTTITmTes
VALUE Mmparson @Sy | )
| AFLASH FLOOD !
» WARNING IS NOT
Case: t-hr FFG > WSR-88D estimate ' WARRANTED* !
t-hr FFG Curves [SA‘: _ S-M.ﬂl:l
Runoff = Thresh-R - What if? Hydrologic Model
Rainfall Scenarios Model Parameter proposed revision
Uncertai
Rainfall nee La'”b'r of the flash-flood
A .
warning system
* We assume a Flash Flood discussed earlier
Warning is issued when |
FFG = WSR-88D estimate t=hr Thresh-R Soil Moisture Conditions
. (RFCs)
Calculation . -
Initial State Uncertainty

1

GIS Variables

Uncertainty GUH

Bankfull
Flow

Regional
Relationships

Uncertainty

28
ref: Ntkelos et al, J. Hydrometeorology, Oct. 2006



Weather-Climate
Ensembles

A
Meteorological
Pre-processor

Calibrated
Weather-Climate

Ensembles

./

Land-surface state
observations (snow,
streamflow,...)

Y

Hydrological
Data Assimilator

Calibrated
Land-surface state
Ensembles

Hydrological
Forecast
Model(s)

y

4

Streamflow
Ensembles

A

/

Hydrological
Product
Generator

Calibrated
Streamflow
Ensembles

Verification
System

HEPEX idea, again.
Nice in concept.

(1) What is the state of
development of such a
system?

(2) What are the
technological hurdles
in the way of making

these sorts of systems
really well calibrated
and useful to decision
makers?
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Simple: pre-adjustment system

Historical
temperatures
and precipitation

Pre-
adjustment
system

Adjusted
temperatures
and precipitation

=TT

e T BS
oo
383

T iy
25 ISSUED: 10172 FRI MAY 17 2002
10  FCSTR: TERRY

01  NOAANWS/NCEP/HPC

CooOORRRRNS LA
~
o

Weather forecasts

—

Temperature
g Decerrier 3001 - Fetruary 2002

Temperature
August - October 2002

Climate forecasts

Temperature
January - March 2002

Temperature

mperatu Temperature
February - April 2002 March - May 2002

‘emperature Temperature
June - August 2002

erature

Release Date: October 17,2001

c/o Kevin Werner, NOAA/NWS, and COMET
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Pre-adjustment method

>
>

Precipitation

Temperature
=
)

>
Time Time
Temperature Ensemble Precipitation Ensemble
Adjusted Temperature ensemble Adjusted Precipitation ensemble
based on a CPC “warm” probability based on a CPC “wet” probability
shift. shift
Additive adjustment Multiplicative adjustment

Coarse model-forecast data are not downsgaled,
c/o Kevin Werner, NOAA/NWS, and COMET I.e, adjusted to have correct space-time variability.



Dealing with ensemble forecast deficiencies: analogs using reforecasts

24 Oct 1979 25 Oct 1998 24 Oct 1996 25 Nov 1997
24-48h F nalyze:

26 Nov 2005
24—48h Forecast Analyzed

24-48h F

17 Nov 1999
24-48h F

1 2.5 5 10 25 50
24—h Accumulated Precipitation (mm)

On the left are old forecasts
similar to today’s ensemble- 27 Dac 1986
mean forecast. For feeding U TSNS : 3
ensemble streamflow model,

form an ensemble from —>
the accompanying \ , ,
analyzed weather on the rissn Fore et e yee
right-hand side. :

Hamill and Whitaker, Nov. 2006 MWR.



Dealing with ensemble forecast deficiencies: analogs using reforecasts

26 Nov 2005

24—48h Forecast Analyzed

1 2.5 5 10 25 50
24—h Accumulated Precipitation (mm)

On the left are old forecasts
similar to today’s ensemble-
mean forecast. For feeding
ensemble streamflow model,
form an ensemble from

the accompanying

analyzed weather on the
right-hand side.

24 Oft 1979

24-48h F

24-48h F

8 Dfc 1993
24-48h F Al

24-48h F

24-48h F




Weather-Climate
Ensembles

\

Meteorological
Pre-processor

Calibrated
Weather-Climate
Ensembles

Land-surface state
observations (snow,
streamflow,...)

Y

Hydrological
Data Assimilator

\ 4

Calibrated
Land-surface state
Ensembles

|

-

Hydrological ’
Forecast

Model(s)

y

(

Streamflow
Ensembles

y

Hydrological
Product
Generator

\

(

o

Calibrated
Streamflow
Ensembles

Verification
System

Develop an
ensemble of initial
land / snow / soil moisture /
streamflow states
consistent with the
observational data,
with appropriate spread
and error covariances.
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Example: probabilistic quantitative
precipitation estimation |n complex terrain

ref: Clark and Slater, Feb. 2006 J. Hydrometeorology.

|more|

Would like to define a gridded
ensemble of possible precipitation
analyses in a region. This would
provide forcings for a land-surface
analysis.

Ensemble should have the right
uncertainty (spread, spatial
covariances).

Proposed solution:

(1) Compute climatological CDF using
past observations. Use this CDF to
define transformation to Gaussian

'g """... . PCP

n- “‘ L SN

ol

=40

& f¢—1-POP

=X

§ ........... ‘— E _’ -
Precipitation (normal space)

(2)Using today’s available
observations (dots), estimate
conditional CDF of precipitation
through regression analysis.

(3) Generate ensembles from

correlated random fields to sample

from the gridded precipitation CDFs.
36



Observations Estimated POP Estimated Precipitation From stations to POPS
in Z-space .
and normalized
precipitation amount.

11-Jan—1997

* At each grid point, perform
weighted regression based
on factors such as distance,
similarity in elevation.
Precipitation data is

O.OOPrel}thot?(;a Ar11'1ci)'8nt2(Or'r?m;oo'O O'OOProot;(ZJbTIitC;/Aof gffc?p?t%ion o _E’;'Oed;gtfﬁ;nogr?ﬁo%gf (zl.gpccijo Cpnvlerte.d to normal
distributions.
. Shown here: observations,

regression-estimated POP,
and estimated normalized
precipitation amount for
three different days, with the
right-hand column
representing the mean of the
CDF in normalized
coordinates appropriate to
0.00 1.0 5.0 10.0 20.0 1000 0.00 0.2 0.4 0.6 0.8 1.0 -50 —-1.0 -0.25 0.25 1.0 5.0 . .
Precipitation Amount (mm) Probobility of Precipitotion Precipitation Amount (2-space) each grid point. Not shown:
an estimate of the analysis
error in Z-space.

Case 2

Case 3
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Generating ensembles from correlated random fields

to sample from the gridded precipitation CDFs.

1. Construct spatially correlated fields of random numbers
o 2 s T %’;‘- : T

=50 -1.0 -025 025 1.0 5.0 =50 -10 -0.25 025 1.0 5.0 =50 -1.0 -025 025 1.0 5.0
Random Numbers = N[0,1] — Ensemble 1 Random Numbers = N[0,1] — Ensemble 2 Random Numbers = N[0,1] — Ensemble 3

2. Use the cumulative probability that corresponds to the
random deviate to extract values from the estimated
CDFs at each grid cell

[T T DT [ T | . O e bamtotion Ameant b 3000
[T T ] [T T ] Precipitotion Amount (mrm)

0.00 1.0 5.0 10.0 20.0 100.0 0.00 1.0 5.0 10.0 20.0 100.0 0.00 1.0 5.0 10.0 20.0 100.0
Precipitation Amount (mm) — Ensemble 1 Precipitation Amount (mm) — Ensemble 2 Precipitation Amount (mm) — Ensemble 3 38



Land-surface model and satellite data
In hydrologic data assimilation

'c 04
£0.35 ° Lo
0 00 O ;g
g 03 ¢ OQ ?_ A
o 0.2 Q¥R %o oA
i, 9:25 & 9950
S o= o ©
3 0.2 L~ oo
So15F o5
[0 015 0000 o
£ o
c 0.1
= 2
2 0.05 R°=0.20
0
0 0.1 0.2 0.3 0.4
GSMDB mean (avg=0.14) [m3m 3]
i 0.4
C')E o A AD AA
E£0.35 &
00 ¢}
> 03 © o
‘i 0251 o %0 _# v
E/ 0.2 0(;9 0% [ ° %
p (o) - 00 4 o o
$ 0.15 % °
= 0063
s 0.1 o g>0 0 4
%) o & 0
o 0.05 °° R%=0.25
0 " i i A
0 0.1 0.2 0.3 0.4

GSMDB mean (avg=0.14) [m3m'3]

Use of land-surface model (LSM), satellite data
desirable because in-situ measurements
relatively rare.

LSM: energy-balance model forced by observed
temperature, precipitation; predicts snow, soil
moisture

Satellite: microwave data most commonly used;
however, retrievals of soil moisture biased,
complicated by estimates of surface emissivity.

Here, CLSM (NASA catchment land-surface
model) and SMMR (microwave satellite
estimates) are compared against global soil
moisture databank (GSMDB). Different symbols
for different locations. Note large bias of both
satellite, LSM relative to observations.

39
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<w> @11‘:;:::;?(:;?;) Input the weather-climate
embles streamflow,...)
: T ensembles and land / snow
Meteorological Hydrological / StreamﬂOW ensembles
Pre-processor Data Assimilator . .
into hydrologic forecast
Calibrated > ( Catbraes > model(s), with multiple
Weather-Climate Land-surface state .
Ensembles Ensembles parameters or stochastic
L — J formulations to account
"] Forecast ¥ for model uncertainty.

Model(s)

\ 4

Streamflow
Ensembles

Hydrological
Product
Generator

v Note: in some systems,the hydrologic forecast
Calibrated model is simply some “routing” model. In
Streamflow others it may be a complicated land-surface

Ensembles model coupled with routing model. In the latter

case, forecast information from the

o hydrological forecast model will be input back
@ Verification into the hydrologic data assimilatoérl.O

System




Hydrologic forecast basics

Condens anon

Y Conl ensation . .
Condensanon

Burace T Trewepiraton
Fonoff

......

Ref: http://www.srh.noaa.gov/abrfc/fcstmethods.shtml

Infiltration happens when the precipitation filters into the
ground; some of which may be recovered by plant roots and
be transpired. If enough infiltration then water may penetrate
all the way down to the water table. The water table is the
top layer of saturated ground that can be found across the
planet. In places where the water table intercepts the land
surface, it is manifested as wetlands, lakes and rivers. The
water found below the water table is called groundwater. If
there has not been any rainfall for several days the river flows
are sustained by drainage from the groundwater reservoir
(baseflow); these flows will gradually decrease until the
groundwater levels drop below the land surface.

Surface runoff is when precipitation moves along the surface
of the ground when either the ground can no longer absorb
the water, or the ground cannot absorb the water fast
enough. The water flows (via gravity) along the surface until it
finds its way into a stream, river, lake, or ocean. Surface
runoff causes the stream to rise quickly after heavy rains
because it is the fastest way water can reach a river or
stream, much faster than through infiltration.

To be able to forecast the amount of water flowing through a
certain point along a river, the forecaster breaks the flow
down into three components: (1) Baseflow: the amount of
water coming from groundwater. (2) Runoff: the amount of
water coming from surface runoff. (3) Routed Flow: the
amount of water coming from upstream areas.
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Lumped vs distributed models

 Lumped: usually empirically based.

Watershed represented with uniform characteristics (Precip(avg), Slope(avg), Soils(avg), ...)
Area runoff “signature” (unit hydrograph) and regression relationships commonly used
Predict flow distribution at watershed outlet

“When no spatial variability is taken into account and when the channel reach or reservoir is
considered as a black box, the routing procedure is referred to as lumped routing.”

Vertical transport: collection of slabs parameters controlling vertical water movement

« Distributed: usually “physically based”

Spatial variability within watershed accounted for (P(x,y), S(x,y), Soils(x,y), ...)

Overland flow and channel routing represented with more spatial detail

Channel routing: translation of runoff hydrograph through channel reaches; route and combine
at junctions

Diffusion equations for vertical water transport

“Propagation of flood waves in a river channel is a gradually varied unsteady process, which is
governed by mass and momentum equations.” Numerical solutions use the kinematic wave
and (sometimes) dynamic wave equations

—>
T%
i%
] |
—>
Lumped Distributed
Refs: http://www.nws.noaa.gov/oh/hrl/distmodel/victor.ppt and 42

Ramirez, J. A., 2000: Prediction and Modeling of Flood Hydrology and Hydraulics Chapter 11, Inland Flood Hazards: Human, Riparian, and Aquatic Communities



Lumped model

Would like to predict flow at downstream gauge based
on flow atmospheric drivers such as “precipitation
excess”

“Unit hydrograph”™ commonly adjusted to provide basin
relz_zpc))nse to a unit pulse of excess precipitation (next
slide

A river basin may be modeled as a collection of
“lumped” sub-basins to obtain a semi-distributed
model

blue area: the UH
watershed: all

1
properties in /\
this area are treated
as homogeneous

N

\AUH
+




“Unit hydrograph”

Q/Qpeak

SCS Dimensionless UHG Features

—i— Flow ratios
—O0— Cum. Mass

08
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0.2 ‘\
%
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\‘
~i
~~—i_
—A—
0 ——
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

A special hydrograph, called the unit
hydrograph, is used to estimate how much
water will be put into a stream by excess
runoff. The unit hydrograph is based on the
basin receiving enough rain in excess of
infiltration to make one unit (cm, inch) of
runoff, uniform over the basin for specified
time period. The unit hydrograph shows how
much of this inch of runoff will go into the
stream in a specific amount of time.

Linearity is assumed, so...

(1) If, for instance, the runoff is something
other than 1.0 cm, 0.1 cm for example, then
multiply the unit hydrograph value by 0.1 to
find the amount of flow into the stream.

(2) Two separate pulses of rain can be
modeled with the sum of two scaled unit
hydrographs.

(3) Time scale can be tuned lumped basin
characteristics (size, slope, geometry).

44
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Sacramento Soil Moisture Accounting
Model (a “lumped” model)

Evapotranspiration
/ / / Inputs: initial hydrologic

conditions, mean areal

A &N Tension AR~ - precipitation, temperature,
Upper 7 F« ' W\N potential evapotranspiration.
Zone L _/’_ _ L {_\ ‘\j Direct

Free .‘ﬁ\l Runoff .
- Surface Outputs: estimated

Interflow RUNGff e
evapotranspiration,
Percolation channel inflow.
Y
Lots of model parameters
J that control aspects like the
Primary 3l Supplg? percolation rate.
Free [§nSion| Tension ontq)
Lower Free Y
Zone
_____ 5N -« ___ \ \177/
Reserved Reserved
—>
)/
Baseflow
_‘_“«_/\_/

Subsurface
Outflow

45

Ref: National Weather Service River Forecast System Model Calibration briefing by F. Fiedler



Estimating lumped hydrologic model
parameters and their uncertainty

Common approach: Force hydrologic model with “observed”
meteorological conditions and upstream gauge data, tune
model parameters until resulting flow at downstream gauge
reasonably fits observed flow.

Problems / challenges:

(1) Uncertainties in observed meteorological data accounted
for?

(2) Why should parameters be considered fixed? Should
they vary temporally, or spatially, or with the model state?

(3) Many parameters may need to be estimated. How does
one simultaneously tune all of them?

(4) "Regulated basins” -- without natural streamflows, hgw
do you calibrate?



Estimating hydrologic model
parameter uncertainty

Ensemble of soil
moisture, streamflow
states, t0

Starting guess at
model parameters

Observed rainfall,
potential evap. Sacramento Model
between t0 and t1

Ensemble of soil
moisture, streamflow
forecast states, t1

Ensemble Kalman
Filter, Bayesian
arameter update

Streamflow
observations, t1

Ensemble of soil

moisture, streamflow
analysis states,
model parameters, t1

This process is repeated
many times over in a
Monte-Carlo process with
different starting guesses
at the model parameters
and slightly different
initial soil moistures and
streamflow states.

After many years, the
result is a distribution of
parameter estimates.

Ref: Vrugt et al., June 2006 47
J. Hydrometeorology



Estimate uncertainty using multiple models?

PRMS[ . .. SACRAMENTO

qirﬂpv
>

qaimp
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s i
IZONE
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c/o Martyn Clark, NIWA



Distributed model example:
basin in Oklahoma (central US)

Slope {m/m)
0-0.002 Charmel Roughness

0.045-0.06
0.002 - 0.003 0.06-0.08
0.003 - 0.005 0.08-009
0.005 - 0.006 009-0.1
0.006 - 0.005 0.1-0.121
:INO Data No Data

Alpha {m)
0-5

5-10
10-20
20-30
30-42
No Data

Dynamical equations to model vertical water transport and flow downstream.
Basin characteristics here estimated with data sources such as GIS data.
Tuning may also be involved.

http://www.weather.gov/ohd/hrl/distmodel/distmod.htm



Issues with distributed models

(1) Despite conceptual appeal, distributed models are still
not totally “physically based” -- still can require lots of ad-hoc
assumptions, codified in profusion of parameters.

(2) Estimating parameters and their uncertainty for each
sub-basin all that much more complex than for lumped model.
There may not be enough observations .... parameter
estimation subject to “statistical overfitting.”

(3) For ensemble applications, require not only high-resolution

databases, but also high-resolution quantification of
uncertainty. Lots more work to do it “right”
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Statistically adjust the
streamflow forecasts,
mitigating the remaining
biases/spread issues, and
tailoring the products to the
formats most useful to the

customers. .y



Statistically adjusting streamflows:
“quantile mapping”

09 r
0.8 r
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0.6 r
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0.3
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0.1
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Observed volume (cms-days) Simulated volume (cms-days)

Fig. 4. lllustration of the quantile mapping method. The panels show the empirical cumulative
distribution function for the observed and simulated monthly flow volume from the historical
simulation. The arrows illustrate the transformation of an ensemble trace to the bias-corrected

ensemble tr~~~

MSE Skill Score

0.8

0.6

0.4

0.2

Probabilistic Forecasts with 1-month lead time

NBC A [(no bias (':orre'ction‘) ' ' ‘ '
EBC -—-&--- event bias correction

L LR © LOWESS regression .
QM ---2--- quantile mapping

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Forecasted Month

« ensures that CDF of
corrected forecast
consistent with CDF
of observed.

 Many examples in
hydrologic literature,
here for basin in
lowa.

Ref: Hashino et al., 2006, Hydrology
and Earth System Sciences Discussions
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Understanding and tailoring hydrologic product
for customers. Example: reservoir rule curves

Full Pool 0 %
20%
40%
60%
80%

Minimum
Pool 100%

Storage Rule Curves

(Dry)

OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP

DISCHARGE

River Flow

OCT NOV DEC JAN FEB MAR APR MAY JUN JUL AUG SEP

Large reservoir operators

largely spill based on rule

curves, with different rules
to follow for dry, average,

wet years.

Represent compromises
between storage for users
(water supply, hydropower)
and anticipated streamflow.

Radically different
streamflow forecasts from
climatology may cause
reservoir operator to follow
a different rule curve.

Possible product: translate
ensemble streamflow
forecasts into ensemble
pool size forecasts.

Ref: “Flood control regional scale 53
facilities” briefing, US Army Corps of Engineers
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Monitor the forecasts,
monitor the users’ issues,
and refine the process.



Validation / verification

* Challenges:

— (1) regulated basins. How to estimate unregulated
flow?

— (2) non-independent observations (today’s &
tomorrow’s streamflows highly correlated, gauge here
and a bit upstream highly correlated)

 — long time series of forecasts to achieve large enough
sample

« — “reforecasts” very helpful.

« Many of the techniques used in atmospheric
ensemble verification are still useful (reliability
diagrams, skill scores, economic value, rank
histograms, etc.)

* A few interesting new verification/display ideas,,



Display techniques

Plumes and probability pies for the first
Brahmaputra flood July 28-August 6

o0 Short-term system was successful in providing
high probabilities of exceedance of the danger
level by the Brahmaputra at the India-
Bangladesh border

ome  oms  ogor  ogn7 o The forecasts were used for evacuation and etc
date (2007)
€ JuLy > < AUGUST >
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flood onset flood cessation 56

Webster et al. 2007
from ECMWF Nov 2007 workshop



Conclusions

* Weather-climate forecast inputs should be
useful for probabilistic streamflow predictions.

* Must appropriately model errors from
— Weather & climate forecasts
— Estimates of land-surface initial conditions
— Hydrologic models

* Need to better understand customers’
decision problems and tailor products to be
helpful in making useful decisions.

o7



[back]

Short-range system in ltaly
The coupled atmospheric-hydrological modelling system

The meteorological forecasting systems

e COSMO-LEPS is a Limited-area Ensemble Prediction System based on the non-hydrostatic
limited-area model COSMO, daily running (12 UTC) at ECMWF since November 2002.

The different model runs are nested on some selected members of the ECMWF Ensemble
Prediction System (EPS), chosen by means of an ensemble-size reduction technique based on a

Cluster Analysis algorithm.
The system has been developed for the late-short to early-medium forecast range (48-120 h).

e The deterministic model COSMO operational at ARPA-SIM (COSMO-LAMI) is used as term of

comparison to evaluate the added value of the probabilistic system.

The configurations (for the autumn seasons 2003-2005)

Name Boundary Initial Moist Prognostic Horizontal Vertical Forecast Number
conditions conditions convection precipitation resolution resolution range of members
COSMO-LEPS EPS EPS analyses Tiedtke or Kain-Fritsch yes 10 km 32 layers 132 h 10
forecasts (randomly selected)
COSMO-LAMI DWD-GME LAMI mesoscale implicit no 7 km 35 layers 72 h 1
forecasts assimilation (nudging) (Tiedtke)

nb: for the COSMO-LEPS system of the year 2003 the forecast range is 120 h, the number of ensemble members is 5, the
adopted moist convection scheme is Tiedtke and the prognostic treatment of rain and snow is not added.

The hydrological model

TOPKAPI (TOPographic Kinematic APproximation and Integration)
physically-based distributed rainfall-runoff model




Spatial Domains and Study Area
8° W |p° 8°E 16°E 24°E 32°F

¢ | ANd E < main river total length : 210 km
- AR ~ 56° N dimension : entire basin ~ 5000 km?2
; ,{‘ 59°N upper basin ~ 1000 km?2
| o
\ WHl! 48°N Alert threshold:
A bore@ [ | A aaenN 0.8 m (~ 80 m3/s) warning
\ 9 ~ Sn==JHN 1.6 m (~ 630 m3/s) alarm
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NOAA'’s reforecast data set

“Reforecast” definition: a data set of retrospective numerical forecasts using the same model
as is used to generate real-time forecasts.

Model: T62L28 NCEP GFS, circa 1998
Initial States: NCEP-NCAR Reanalysis Il plus 7 +/- bred modes.

Duration: 15 days runs every day at 00Z from 19781101 to now.
(http://www.cdc.noaa.gov/people/jeffrey.s.whitaker/refcst/week2).

Data: Selected fields (winds, hgt, temp on 5 press levels, precip, t2m, u10m, v10m, pwat, prmsl,
rh700, heating). NCEP/NCAR reanalysis verifying fields included (Web form to download at
http://www.cdc.noaa.gov/reforecast).

Validation data for this study: North American Regional Reanalysis (NARR)analyzed
precipitation (Mesinger et al., BAMS, 2006)

Real-time downscaled probabilistic precipitation forecasts:
http://www.cdc.noaa.gov/reforecast/narr
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(3) ESP Technique (continued)

A Now Low chance of this

Past Future / level flow or higher

> Medium chance of
this level flow or
higher

Flow

High chance of this
level flow or higher

Time

©The COMET Program
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Sacramento Model Structure

£ttt

v v vy v

Ref: National Weather Service River Forecast System Model Calibration briefing by F. Fiedler
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Sacramento model
contributions to runoff

SAC-SMA Model

Precipitation
\I/ \I/ Impervious and Direct Runoff
Pervious Impervious
Evaporation Surface Runoff
Upper_ _--" -
- Zone Interflow
Lower Supplemental Baseflow
Zone
Primary Baseflow

PN
(dY)

Ref: National Weather Service River Forecast System Model Calibration briefing by F. Fiedler
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1. Assemble matrices of time-invariant spatial attributes
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2. Compute the monthly empirical climatological c.d.f.s of daily precipitation
0
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Precipilotion {mm) Precipftotion [mm) Pracipitolion {mm)
- (hegin looping through time steps)
3. Extract station precipitation data and transfor
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= {(begin looping through grid cells)

precipitation

precipitation

occurrence

precipitation
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{normal guantile trans form)

4. Compute the diagonal weights matrix, centered on grid cell igrid
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5. Estimate POP, PCP, and E at the igrid-th cell

probability of precipitation

Brow = Buse + [ XTWVX) XTW (Y - x)
1

POP= —
T+ exp Zya)

precipitation amounts

pe = (XWX XTWY
PCP=Z. B

= {end looping through grid cells)

Cumulative Prob

—es!jma!e_ regression coefficients with station data; apply to the igrid-th cell

PCP
171430?
Precipitation (normal space)
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